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IMPINGEMENT OF WATER DROPLETS ON WEDGES AND DOUBLE-WEDGE AIRFOILS
AT SUPERSONIC SPEEDS ‘

.
By JOHNS. L%RAFINI

SUMMARY

An analyticalsoluttin h prawntidfor the equution-sof motion
oj watir dropleti impin@ng on a wedge in a twodimewi.ond
mpersoni-cffowjiefd with an attuckd dock wave. T’lwclosed-
form solwhlmyields analytical qmmi.on3 for the equation of
the droplet trajeeton], h 10CUJrate of impingement and the im-
pingement ndocity at any point on the wedge swface, and the
ioial rate of impingement. The analytical tzzprewimw are
utilized in the ddemninutionoj the impingenwni of water drop-
kts on tiujorward surfaca of symmetricaldouble-wedgeairfoils
in supersonicjbwfiekk with attacheddock warn%.

I’or a wedge, the rtwdta provide infornun$on on the efects of
the droplet 8ize, L&?f?ce-stream liach number, the 8emiupt3
augle, and the premwrealtitude. For the o?ould+wedgeairfoil,
additional calcutiwns provide information on the e$ect of aix-
[oi[ thichnemratio, chordlength, and angle of aituck.

The resuh!xjor the symnutrical double-w~dgeairfoi-1are ako
correltid in term of the toi!ulco.?leclionefmkncy m afurm!ion
oj a relative mod#ied inertia parameter. Tlw reswlls are pre-
sentedjor the fohzoing range$ of cariabk: free+t$eum i3tatic
temperature,@OOto 460° R; dropletdiumakr,1?tQ100 microns;
free-stieam Mach number, 1.1 to $.0; wmiapex an@e for the
wedge, 1.14° to 7.97°, and camxponding double-wedge-airfm”l
thicknm-t.o-chrd ratw, 0.0$ to 0.14; pressure ai%%uie, sea
ievd to $0,000feet; and chordLength,1 to %Ofeet.

INTRODUCTION

The problem of ice prevention on aircraft flying at sub-
sonic speeds up to critical M&ch numbers has been a subject
of considerable study and research by the NACA. The recent
advent of aircraft flying at transonic and supersonic speeds
lIas required an extension of these icing studies. That an
icing problem exists in the transonic and supersonic speed
range is verjfied in reference 1,which shows by an analytical
investigation with experimental confirmation that diamond
or symmetrical doubkwwlge airfoils are subject to possible
icing at flight Mach numbers as high as 1.4. A similar re-
SUIt is expected for other airfoil shapes being considered for
use ruttransom”c and supersonic flight speeds.

In conducting research on the problem of ice prevention
on aircraft and missiles, regardless of the magnitude of the
flight speed, it is essential that the impingement of cloud
droplets on airfoils and other aerodynamic bodies be deter-
mined either by theoretical calculations or experiment. The

impingement variables that must.be determined are the totaI
water catch, the extent of impingement, and the rate of im-
pingement,per unit area of body surfam. These variables
ean be determined analytically from calculations of the cloud-
droplet trajectories obtained for the various aerodynamic
bodies. Investigators have reported the results of studies of
cloud-droplet trajectories about right-circular cylinders (refs.
2 to 5) and about airfoils (refs. 6 to 9) immersed in an in-
compressible fluid. An evaluation of the effect of compres-

,sibility on the droplet trajectories about cylindem and airfoik
up to the critical flight Mach number is presented in refer-
ence 10.

At present, little information exists on the impingement
of droplets on aerodynamic bodies in a supersonic air stream.
The concentration of past effort on problems of impingement
on airfoils at subsonic flight speeds and the present lack of
convenient and rapid means for obtaining the rotational
flow fields about airfoils at supersonic speeda are possible
explanations for the scarcity of trajectory calculations for
the supe~onic region. An initial contribution to the solu-
tion of the over-all problem of impingement of water droplets
on aerodpamic bodies at superaonk speeds is given in
reference 11, which presents an analysis of the water-
interception characteristics of a“wedgein asupersonicflow field.

The present report extends the analysis of reference 11
and further presents an extensive study of the impingement
of water droplets on two-dimensional wedges and double-
wedge airfoils for supersonic flight speeds that remdt in
attaohed shock waves and constant veloeity fields behind the
shock waves. For the wedge angles and double-wedge-
airfoil thickness ratios considered herein, the shock-wave-
attachment Mach number varies from a value slightly
greater than 1 to about 1.4. The method employed is based
on an”analyticrd solution of the equations of motion by means
of a closed-form integration. The closed-form solution
yields analytical expressions for the equation of the trajec-
tories, the local impingement efficiencies, the velocity at any
point on the trajectory, and the total rate of impingement.
This solution is made possible by the use of an empirical
relation for the drag coefEcients for spheres that gives a good
approximation of the experimental drag coefficients.

The results of calculations for the rate, the extent, and the
distribution of impingement of water droplets on wedges
and symmetrical double-wedge airfoils are presented herein.
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The ranges of variables included for the wedge are: fiee-
stream static temperature, 420°, 440°, and 460° R; ‘droplet
diameter, 2 to 100 microns; free-stream Mach number, 1.1
to 2.o; tangent of the semiapex angle, O.O2 to 0.14; and
pressure altitude, sea level, 15,000, and 30,000 feet. The
ranges of variables for the double-wedge airfoil are the same
as those for the wedge, and the additional variables for tha
symmetrical double-wedge airfoil range from 0.02 to 0.14 for
the thickness ratio and from 1 to 20 feet for the chord length.

The work reported. herein was performed at the NACA
Lewis laboratory in the spring and summer of 1952.

ANALYSIS
STATEMENTOFPROBLEM

The solution of the problem of impingement of water
droplets on a two-dimensional wedge at supersonic speeds
with an attached shock wave is not as difEcUlt’ as that for
the impingement t on various airfoils at low subsonic speeds.
For the wedge at supersonic speeds with an attached shock
wave, the air velocity everywhere ahead of the shock wave
is constant and equal to the free-slru air velocity VI
(fig. 1). The air velocity behind the shock wave Vz is also
everywhere constant and parallel to the wedge surface. AU
the droplets have the same initial velocity (that of the ties-”
stream air veloci~), and their trajectories are exactly co-
incident with the air streamlines upstream of the shockwave.
All water droplets of a given size are subjected to identical

At f=O

ah-velocity fields, which in turn produce identical force
systems downstream of the shock wave, irrespective of tho
point aIong the shock wave where the droplets cross tho
wave. It follows, therefore, that, for dropIeta of a given
size, all the trajectories in a given problem are identical with
respect to the point where the droplet crosses the shockwave.

By adopting a frame of reference that moves at the con-
stant velocity of the air V2 downstream of the shock wave,
the problem of the droplet motion is reduced to the stilkir
problem, defied as the- determination of the motion of o
droplet that, having an initial velocity, is projected into
quiescent air. Hence, relative to the moving frame of refer-
ence, the initial velocity of the droplet upon crossing the
shock wave is equal to the vectorial difference of the free-
stream air velocity VI and the air velocity V2downstream of
the shock wave. Adoption of the frame of referanco moving
with a constant velocity reduces the problem from tho solu-
tiori of two simultaneous nonlinear second-order differential
equations in the fixed wordinate system to the solution of a
single nonlinear second+rder diilerential equation in the
moving coordinate system. AX any given instant, the drop-
let displacement relative to the point of intersection with the
shock wave in the fixed frame of reference is obtainod by
adding vectorially the droplet displacement within the mov-
ing frame of reference to the displacement of the moving
frame of reference for the same increment of time.

At t=f
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general method was used m reference 11, where the
one second -order differential equation represauting the drop-
let motion relative to the air velocity behind the shock wave
was integrated graphically. However, it is possible to
obtoin a completely analytical solution by means of a closed-
form integration without resorting to the use of numerical
integrations or analog computing equipment, if an empirical
relation is assumed for the drag coefficient as a function of the
Reynolds number of the droplet relative to the air. It will
Im shown that this closed-form integration of the still-air
problem when applied to the wedge in supersonic flow with
attached shock wave yields the equations for the trajectories
of the water droplets and the droplet velocities at any point
on the trajectories and makes available relations for the
rates of total water impingement and the local rates of water
impingement along the wedge surface. Furthermore, it is
shown that these equations can also be readily applied to the
detmmination of the droplet impingement on a double-wedge
airfoil in supersonic flow with attached shock wave.

Three of the usual assumptions made in the previous in-
vestigations on impingement at subsonic speeds and also
reqw”red for this investigation are (1) the water droplets are
always spherical and do not change in size, (2) the force of
gravity on the droplet maybe neglected in comparison with
the drag forces, and (3) the drag of the air on the droplet is
that of a viscous incompressible fluid. Here it is additionally
awwned that (4) the two-dimensional supersonic flow field
about the wedge is frictions except within the infinitesi-
Iually thin attached shock wave, (5) no condensation shock
occurs and no change in phase occurs as the ww%r droplets
travmse the oblique shock wave, and (6) the unbalance of
the forces on the water droplet from the instant it enters the
shock wave until it emerges from the shock wave can be neg-
lected in the calculation of the trajectories.

EQUATIONOFDROPLETMOTIONINMOVINGRBFEEENCEFRAME

The velocity of the droplet in the moving frame of refer-
ence is

V=lv.–v,l (1)

where ~,i is the droplet velocity with respect to the fixed

frame of referenge, .~d ~g is the air velocity downs&& of
the attached shock wave also with respect to the tied
frame of reference (fig. 1). In the frame of reference moving

with the velocity Vz, the statement of Newtcn’s lam of mo-
tion for the water droplet becomes

from which

dU 3 pf u~—=–g-----i%
dt

(2)

(3)

(A complete list of symbols is given in appendis A.)
Equation (3) is the differential equation of motion of a

droplet projected with an initial velocity into a region of
quiescent air (the so-called still-air problem). The shock
wave is considered to be a surface of discontinuity from which
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the droplets emerge with a velocity V1. In this case
initial velocity of the droplet is

U,=p,-v,]

which is the magnitude of the vector difhrence of the

w

the

(4)

air-
velocity vectors ~pstream and downstream of the attached
shock wave. As can be shown from consideration of the
continuity equation and the equation for conservation of
momentum across the oblique shock wave, the velocity vec-

tor ~t is normal to the shock wave. At any subsequent

instant of time, the felative droplet veloci@ vector ~ retains
the same angular orientation to the shock wave and changes
only in magnitude.

In reference 11 the solution of equation (3) is obtained by
numerical integration. The result obtained in this manner
makes it necessary to use a graphi@ procedure in determin-
ing the trajectories and the local rates of impingement.
However, an analytical solution of equation (2), which elimi-
nates the graphical procedure, can be obtained if the esperi-
rnental values of the drag coefficient CD are expressed in Q
function involving the Reynolds number Re,. The relation
is

(5)

where e and m are the empirical constants. This empirical
relation is a valid approximation in the range of Reynolds
numbers to which cloud droplets are subjected in trajecto~
calculations. Substitution of the expression for CD (eq. (5))
in equation (3) results in the expresion

%=%=-% 5[’+’(%31 ‘6)
where the 19cd relative Reynolds number Re,=2pJJa/P~.
The displacement of the water droplet in the moving frame
of reference z is measured from the air streamline that inter-
sects the shock wave at the point where the water droplet
enters the ah-flow field downstream of the @sock wave.
The closed-form integration of the ditlerential equation (6)
is presented in appendix B. . The use of 2/3 for the exponent
~ and 0.158 for the value of the empirical constant ● in equa-
tion (5) yields an empirical curve for the diag coefficient as
a function of the local Reynolds numbers that approximates
very w-all the variation of the experimental values of the
drag coefficient in the range of Reynolds numbers from 0.5
to 500. The value of 2/3 for the exponent m also facilitates
the closed-foma integration of the d.ifTerential equation of
motion. In figure 2 a graph of the empirical relation is
presented, along with the drag-coefficient data of references
4 and 12.

The results of the integration are given by the following
equations:

J(Re,, t-’/3c:1+i)e’– l–b-’ 4(Re’-t-v3’-1+1)e1-11

(7)
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(8)

(9)

where

The intermediate steps of integration are~ven in appendix B.
Equations (7) and (8) give, respectively, the diapIacement

and the veIocity of the droplet at any instant in the moving
frame of reference. The displacement of the droplet with
respect to the point where it crosses the ~ock wave can be
obtained by a vectorial addition of the displacement x and
the displacement of tlm moving reference frame in the cor-

responding time interval. The droplet veloci~ V&relative
to the fixed frame of reference must also be obtained by the

vectorial addition of ~ (eq. (8)) and ~~. Equation (9)

gives the maximum value of x obtained as the time of trav~l
in the air-flow field downstream of the shock wave
approaches infinity. The sign.iiicance of this quantity wiII
be discussed in subsequent sections.

RELATIONSREQUIREDFORAPPLICATIONOF CLOSED.FOBMSOLUTION
TO OBTAINDROPLETMOTIONANDIMPINGEMENTIN FIXED

REFEEENCEFRAME

Impingement on wedges.—For a problem of given aero-
dynamic conditions, the trajectories of all the water droplets
of a given size are identical when the points where the droplot
trajectories intersect the shock wave are superimposed.
This unique characteristic of the water-droplet trajectories
about a wedge in supersonic flow with an attached obliquo
shock wave is the result of two constant velocity fields, ono
upstream and one downstream of the shock wave. There-
fore, only one set of equations for a single trajectory is neces-
sary to calculate the impingement parametem for a specified
problem, including a given droplet size. The values of tho
initial relative velocity Uf, the ~tial Reynolds number
Rq,,, and the density ratio ptJti are needed for substitution
in the closed-form solution of the equations of droplet motion.
These values can be obtained from information available in ,
reference 13 and from the use of simple algebraic and trigo-
nometric relations for given values of the free-stream static
temperature h, the droplet diameter d, the free-stream iMach
number Ml, the angle of surface inclination to the free-strcmn
direction u, and the free-stream static pressure PI. Theso
reIations result in the following expressions for the initial
relative velocity and the initial relative Reynolds number:
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U:=luil= V141+Q2—2Q Cosu= Vw (lo)

and
—

(11)

A convenient form of the solution for the impingement on
a wedge or the front half of a double-wedge airfoil is obtained
if S is defined as the distance to the point of impingement
measured from the leading edge for a water droplet that
enters the flow field behind the shodc wave at a distance r
above the leading edge (fig. 1). The uuique relation between
S rmd t in a given problem for droplets of the same size is
quite readily determined by considering the displacement of
the water droplets as the vectorial sum of the displacement
of the water droplet relative to the moving frame of reference
and the displacement of the moving reference frame relative
to a fixed frame of reference (referred to wedge). Since the
moving referenm frame has a velocity equal to the air velocity
Vz, which is constant in magnitude and parallel to the wedge
surface, only the droplet travel in the moving reference frame
includes the component of droplot travel representing the
upprorwh of the water droplet to the wedge surface. For a
water droplet starting from point A and impinging on the
wedge surface at point D (fig. 1), the displacement of the
moving reference frame (= Vzt, -where t is zero at point A) is
given by the displacement vector ~ equal to ~, and the
droplet motion in the moving frame of reference is given by
tlm displacement vector ~ equal to ~. Therefore, rela-
tive to the starting point at A (fig. 1), the displacement of
the water droplet to the point of impingement at D is
obviously equal i% ~ +~ or to ~+~. From figure 1,
the displacement of the water droplet at the point of impinge-
mentt D, measured from the leading edge at E, is given by
adding the vector ~ to the displacement vector from the
starting point A; and the displacement of the droplet at D
referred to the leading edge is

s=lml=lm+m+ml=] m+m]=]ml+]m]=f+~’

(12)

whero : is the magnitude of the displacement vector ~,
and g’ (= VJ) is the magnitude of the displacement vector
~D (the displacement of the moving frame of reference).

The values of ~ and fare obtained in terms of x, the distanm
of travel in the moving reference ihme, from simple trigo-
nometric identities involving the various angles shown in
figure 1:

~=z sine tan (v-l-u) , (13)

where x is given by equation (7); v by

‘=sh-’[@h”H
(13a)

and
f=z sec (v+u) (14)

Substitution of equation (14) into equation (12) for the sur-
face distance to the point of impingement yields the following
equation:

S=x sec(v+u)+V, ~2 T (15)

Since z is a function of ~ in equations (13) and (15), the
expressions for { and S, respectively, are functions of ~.
However, since ~ cannot be eliminated from equations (13)
and (15),5’cannot be obtained explicitly as a function of ~.
Nevertheless, the curves of ~, the initial displacement of the
water-droplet trajectory from the leading edge normal to
the free-stream direction, against S’, the distance to the point
of impingement of the stated water-droplet trajectory, can
be obtained by substitution of the same set of values for r
in the expressions for ~ and S.

An analytical expression for the local impingement
efficiency can be obtained horn the preceding expressions
for ~ and S. The local impingement efficiency 13is defied
by the expression

dc

(16)

dr

where A~ is the ditlerence in the initial displacements of two
water droplets having very nearly equal initial displacements,
and Ml is the small increment of wedge surface between tho
points of impingement of the two water droplets. Differen-
tiating ~ and S with respect to r and performing the division
indicated by equation (16)yield the following expression
for D: .

where
nl=sin e tan (V+u) (18a)

m=sec. (v+u) (lSb)

(18C)

Since P and S both are functions of ~, the local impingement
efficiency ~ at any point on the wedge surface is determined
by using the same value of r in equations (17) and (15). The
value of p that exists as the point of impingement of the
water droplet on the wedge surface approaches the leading
edge as a limit (S’+) is given by the following:

.

The magnitude and direction of the droplet velocity at the
point of impingement V~,m (relative to the fixed frame of
reference) can also be easily obtained at any point on the
wedge surface as

()
Ui.* 2+2Q. ~ Cos (P+ u) (20)

[

Uim
Kf==U— U;m=U—SiIl-l — sin (V+u)

V4 i. 1
(21)

where Kis the angle between the free-stream velocity vector
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V, and the droplebvelocity vector ~~, rmd u’ is the rmglo

between the droplet-velocity vector ~~ and the air-velocity

vector T*. In equations (2o) and (2I) for a given tmjectoly, “
Vl, Q, w, Ui, v, and u are constants. Therefore, for o given
trajecto~, V%,= and Kti are functions only of U (eq. (8)),
which is in turn a function of r, the dimensionless time
variable.

Impingement on symmetrical double-wedge airfoils,—
The impingement on a double-wedge airfoil maybe obtained
from the solution to the problem of impingement on a wedge
as presented heretofore. In this report, the double-wedgo
airfoil considered is symmetrical, the maximum thickne-m
occur@g at 50 percent of chord (fig. 3). At zero angle of
attack, the impingement on a double-wedge airfoil will be
limited to the region from the leading edge to the shoulder
at 50 percent of chord. The solution for impingement on a
wedge surface having a given semiapex angle u (the angle of
inclination of either wedge surface to the free-stream direc-
tion) can also be used as the solution for a double-wedge air-
foil where the thiclmess ratio is equal to tan u, the tangent of
the semiapex angle, and where the droplet size and other
parameters of the problem are the same aa for the wedge.
Therefore, the values of the local impingement efficiencies
9 and L?,at any given point on the surface will be identical
for both the w-edge and the double-wedge airfoil at zero anglo
of attack under the aforementioned similarity of conditions.

The solution for the impingement on the double-wedge
airfoil at angle of attack can also be obtained from the
solution for impingement on a wedge as for the case of the
double-wedge airfoil at zero angle of attack. When the
symmetrical double-wedge airfoil is at angle of attack a,
the angle of inclination of its forward upper surfaco to the
free-stream direction is equal to u– a and that of the forward
lower surface is equal to U+ a. Therefore, the solution to
the impingement on the upper and lower surfaces of the
double-wedge airfoil is obtained $om the solutions for
impingement on wedg= having the redeiined semiapex angles
of u— a and U+ a, respectively, where the droplet size and
other parameters of the problem are kept the same. I?or
the double-wedge airfoils at angles of attack having tangents
equal to or greater than the thiclmess ratio, the wmtw
droplete will not impinge on the upper surface. At anglw
of attack having tangents greater than the thickness ratio,
some water droplets may impinge on the lower surface
beyond 50 percent of chord. These three conditions are il-
lustrated schematically in figure 3. For a<tan-’(T/c), the
impingement occurs on surfaces AC and A B;for a= tan-l (T/c),
impingement occurs only on surface AC; for a>tan- 1(T/c),
impingemezit occurs on lower surface AC and may occur
on lower surface CD. However, the condition where
a>tan- 1(T/c) is not considered herein, since the solution
presented in this report is not valid for the determination

(a) Angle of attack a<tan-l(T/c).
(b) Angle of attack a=tan-’(T/c).
(c) Angle of attack a>tan-’(T/c).

~GURZ &-8chematia diagram of symmetrical doubkvedge airfoil at
angle of attack in superaonio flow with attached shook wave.
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of trajectories of droplets impinging on the surface beyond
the shoulder or .50 percent of chord of the doubl~wedge
airfoil (surfaces BD or CD), where a portion of the trajectorim
is within the aspansion zone emanating from the shoulder.

RESULTS AND DISCUSSION

I?rom the equations presented in the previous section and
in nppendix B, the impingement of water droplets on a wedge
in a supersonic flow field with an attached shock wave can
be calculated over a range of free-stream conditions, wedge
anglea, and droplet sizes. As has been indicated previously,
the impingement characteristics of a double-wedge airfoil
(fit zero angle of attack and also for small values of angle of
attack) can readily be determined from the impingement on
wedges for similar conditions. The results for the wedge
and the double-wedge airfoil are presented and discussed
separately. A comparison of the total collection eiliciency
nnd the water impingement rate at zero angle of attack for a
double-wedge airfoil with those for an NACA 0006-64
nirfoil is presented in appendix C.

WEDGE

Zooal impingement efflcienoy.-The rate of water impinge-
ment on a local area of wedge or airfoil surface is proportional
to L dimensionless term P, the local impingement efficiency.
The local rate of water impingement in pounds per hour
per square foot is

WP=0.3296V,W13

where 19is defined in equation (16). The local impingement
efficiency, when given as a function of the surface distance
of the wedge, allows tho determination of the local rate of
impingement of water droplets at any point on the surface,
the total impingement of water droplets on the entire sur-
face or any given portion of the surface, and the extent of

impingement on the surface. The local impingement
efficiency B is related to a point at a given distance S on
the wedge surface in equations (15), (17), and (19) by the
dimensionless time variable ~, which is common to all three
cxprass.ions. The variation of P with S is presented in
figure 4 for an extensive range of free-stream conditions,
semiapex angles, and droplet sizes. The value of P at the
leading edge (S40) is the sine of the semiapm angle (sin u);
and as S increases, the value of p decreases rapidly and ap-
proaches the value of zero asymptotically as S approaches
infinity. However, it is to be noted that negligibly small
values of 13@ = 1 percent of & for the wedge) are attained
at large but finite values of S.

The curves of 19as a function of S presented in figure 4
are those of an idealized situation. The assumed two-
dimensional supersonic flow field about the wedge does not
account for a stagnation point that must exist at the leading
edge of the wedge, regardless of the sharpness of tho leading
edge. ID addition, the leading edges of wedges and double-
wedge airfoils might be considered to be somewhat rounded
when subjected to considerable m-cation. Therefore,
it is reasonable to assume that very near the lead@ edge
(S+0) the value of 6 would actually be greater than the
calculated value of # at the given distance S. However,
this should have a negligible effect on the rest of the p curve
and also on the total impingement on the wedge, since the
effect ‘of a stagnation point would bo limited to n very
small region about the leading edge.

For S approaching very large values, the calculated values
of B probably di.tier somewhat horn actual values obtained
in flight, because the analytical solution of the present report
does not consider the existence of the boundary layer on the
wedge surface. Since the boundary-layer thickness increases
with the surface distance along the wedge, droplets that im-
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FIGURE4.—Local frnpingementefficiency on wedge as function of distance along surface. Free+tream static temperature, 440° K
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pinge at large distancw from the leading edge actually would
ham traveled through the boundary layer for some non-
negligible interval of time. However, only a very small
fraction of the total water droplets of a given size impinge
under this condition, and for large values of S the values of
~ are negligibly small. For example (fig. 4 (a)), such would
be the case for values of S greater than 8 or 9 feet, w-here
/3<0.0002 m compared with 19,=0.020.

A prelimhmry survey disclosed a negligible’ effect of the
free-stream static temperature on the local impingement
efficiency as a function of the surface distance along the
wedge (II qytinst S).. Values of P and corresponding values
of S were calculated for free-stream static temperatures of
420°, 440°, and 460° R, droplet diameter of 20 microns, free-
strenm Mach number of 1.3, tangent of the semiapex angle
of 0.06, and pressure altitude of 15,000 feet. The values of
p for tlm free-tream static temperatures of 420° and 460° R
are within 1 percent of the values of/3 at 440° R. Since these
calculations show that curves of ~ against S for the three
vrducs of free-stream static temperature form practically a
single curve when plotted to the usual scales, no figure is
presented to illustmte the effect of free-stremn static tem-
porahu-e on impingement. Furthermore, the results included
herein, which are calculated for a free-stream static temper-
ature of 440° R, may be used in the range of temperature
from 420° to 460° R or possibly an even greater range.

The effect of the free-stream static pressure on the local
impingement efficiency as a function of the surface distance
along the wedge is presented in figure 4 (a) for pressure
altitudes of sea level, 15,000, and 30,000 feet. Increasing
the pressure altitude (decreasing the free-strem.n static pres-
sure) increases the values of f? at any distance S. For ex-
ample, at S= 1.5 at sea level, 9 is 0.0052; and at 30,000 feet,
p is 0.0071. Since /30 (the value of ~ at S=0) is equal to
sin u, where u is the semiapex angle, the curves for the three
pressure altitudes have the same maximum value of P. Also,
for the various pressure altitudes, the extent of impingement
along the wedge surface is essentially the same.

The effect of the semiapex angle u of the wedge on the
local impingement efliciimcy as a function of the surface dis-
tante along the wedge is presented in figure 4 (b) for values
of tau u from 0.02 to 0.10. Since the values of I% are equal
to sin u, increasing tho semiapex angle of the wedge results
in au increase of ~o. The surface extent of perceptible iin-
pingement (as characterized by B= 0.01%) does not vary as
the wedge thickness is increased.

The collect of free-stream Mach number on the B curve is
presented in figure 4 (c) for free-stream Mach numbers of
1.2, 1.3, 1.4, 1.5, and 2.0. For the wedge semiapex angle
presented in the figure (tan u= O.04), the value of -kfl= 1.2 is
close to the shock-wave-attadunent Mach number. The
shock-wnve-att achment Mach number is a function of the
wedgo semiapax angle and is defined as that Mach number
below which the shock wave is detached from the wedge.
An increase in the free-stream Mach number MI remits in
an increased surface extent of perceptible impingement and
also in an increased value of B at any given distance S (except

Tqngent of

Ill

samiopex
ongle, tan u

.-

?

\

b)

O&me obq $fOce of v&e (fmrn Ie3ing edge), l!$ ft

(b) Effect of wedge semiapex angle. Droplet diatioter, 20miorcm;
free-stream Mach number, 1.3; pressure altitude, 16,000 feet.

Figure 4.-Continued. Local impingement efflckncy on wodgo as
function of distance along surface. Free-streamstatio tempomture,
440” R.

at S=0, where L?=130=sin u and at S~m, whore HO).
This increase in the surface extent of perceptible impinge-
ment is shown in figure 4 (c), in which, for free-stream M(LCII
numbers of 1.2, 1.3, 1.4, 1.5, and 2.0, the surface extents
of perceptible impingement on the wedge (where B= 0.01130)
are 5.35, 6.05, 6.65, 7.20, and 9.4 feet, respectively.

The effect of the droplet size on p is presented in figure 4 (d)
for droplet diameters of 10, 20, 30, 40, 50, and 100
microns. The surface extent of impingement and the values
of B at any given distance S are considerably increased as the
droplet size is increased. For example, for the semiapox
angle prAented in the figure (tan u= O.06), at S=3 feet the
values of 19are 0.0000, 0.0033, 0.0106, 0.0182, 0.0244, and
0.0417 for values of droplet diameter of 10, 20, 30, 40, 60,
and 100 microns, respectively. The surface extent of per-
ceptible impingement has values of 1.5, 5.7, 11.2, 18.1, and
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FIGUEE4.—Conoluded. Local impingementefficiency on wedge as function of distancealong surface. Free-sham rstatiotemperature,440° R.
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28.0 feet for droplet diameters of 10, 20, 30, 40, nnd 50
microns, respectively. As shown by the preceding dis-
cussion and also by a comparison of the values of 19as a
function of S (fig. 4), varying the droplet dkqneter from 20
to 30 microns or from 30 to 40 microns is of the same orclor
of magnitude in its effect on the /3against’S curve as vmying
the pressure altitude from sea level to 30,000 feet or varying
the free-stream Mach number from 1.2 to 1.$.

Total impingement,-The effects of the free-stream hfich
number, the semiapex angle of the wedge, the pressure alti-
tude, and the droplet size on the total impingement on w
wedge surface of intinito extent are given in figure 5. TIIe
total impingement is represented. by ~., which is the t of
the droplet having its trajectory tangent to the wedge surface
(theoretically the tangent tmjcctm-y touches the wedgo
surface at a point i%m ). This tn can be obtained from the
integration—

~m=
J

- fIdS
o

or more directlyfrom equation (13) of the analytical solution,
as

rm=z. sin otan (P+u)

where w isgiven by equation (9) and is also defined in uppGn-
dix A. The value for X* is obtained from the expression for
z (eq. (7)) by allowing r+ co. ,Since the droplet that cn tcm
the flow field downstream of the shock wave at a distanco
~ equal to ~~ (fig. 1) theoretically impinges on the weclge
surface only m the surface distance S’ approaches intinity,
only droplets having values of f equal to or less than fm will
impinge on the wedge surface of intinite extent. Tho rate
of total water catch on one wedge surface in terms of tm is
given as

W~=O.3296~mVlw

where Wm is expressed in pounds per hour per foot of span,
VI in miles per hour, and w in grams per cubic meter.
Therefore, t= is directly proportional to the rate of total
water catch on the entire wedge surface and is tho rato of
total water catch on one wedge surface per unit of span,
free-stream velocity, and liquid-water content (in appropri-
ate units).

The variation of ~mwith the tangent of the wedge serninpcx
angle tan u is shown in figure 5 (a) for free-stream Nfach
numbers of 1.2, 1.3, 1.4, and 2.o. & expected from tho
curves of s as a function of S, the value of t- increases as
tan u increasw. ~owever, the rate of increme in r- Ivith
respect to tan u decreases with an increase in tan u. As can
be seen from figure 5 (a), increasing the free-stream Jllach
number increases the value of ~mfor a constant value of tan u.

The variation of ~mwith pressure altitude is presented in
figure 5 (b) for two l~ach numbem. In the range of pressuro
altitude horn sea level to 30,000 feet, the increase of ~= with

(a) Effect of tangentof semiapexangle. Droplet diameter,20 tiorom;
pressurealtitude, 15,000feet.

(b) Effeat of pressurealtitude. Droplet diameter, 20 rniorons.
(c) Effect bf droplet size. Preseum altitude, 15,000 feet.

FIGUEE5.—Total impingementrate ~. for wedge of iniinite estwt.
Free-stri?amstatio temperature,440° R; ~.= 0.32fKY.T71w.
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an increase in pressure altitude is approximately linear.
The variation of ~mwith the droplet diameter d in microns is
shown in figure 5 (c). In the range of droplet diameter from
10 to 100microns, in as a function of d results in a curve
that is very nearly a straight line when plotted on logarithmic
paper. This linearity permits an accurate interpolation of
~m when calculations are made for a few droplet diamete~
for a given value of free-stream Mach number, wedge semi-
apex angle, and pressure altitude.

Droplet velpoities at impingement,-The variation of

V.,,JVI (ratio of droplet impingement velocity to free-
stream velocity) with the surface distance along the wedge
is presented in figure 6 for three cssea. These three cases are
represent ative of the results when tb e droplet diameter d is
qO mic,ro~ and the pressure altitude is 15,000 or 30,000 feet.

The curves of V~,JVl as a function of S have characteristics
similar to the curves presenting B as a function of S. At
S=0, obviously, all the curves have V.,JV, equal to unity;
and, as S is increased, the value of the velocity ratio rapidly
decreases and asymptotically approaches V*/VI, the ratio of
the air velocity downstream of the shock wave to the air
velocity upstrefirn of the shock wave. The solid curve in
figure 6 illustrates a typical situation for which VJVI is very
nearly unity (tan u= 0.02 and Ml=2.0). The two lower
curves (tan u=O.06 and 0.10 at T1l=l.3)are typical for cases
where a stronger shock wave produced by a larger semiapex
angle results in decreased values of V~,ti/Vl for large values
of s.

SYMMETRICAL DO URI&WEDGE AIRFOIL

As shown in the ANALYSIS, the local impingement
efficiency P at any point on the forward surfaces of a double-
wedge airfoil (surfaces A B and AC in fig. 3) can be obtained

FIGURE 6.—Variation of ratio of impingement velocity of droplet to
free-stream velocity with distanm along surface of vwdge. F-
@ream static. temperature, 440° R; droplet diameter, 20 microns.

directly from the results for the B against S’ curves for wedges.
The local impingement efficiency P may be obtained from
figure 4 or equation (17).

In general, the results for the impingement on a sym-
metrical double-wedge airfoil are presented in this report in
terms of the total collection efficiency Emas a function of the .
scale parameter +, in an attempt to conform with the
existing literature on the impingement characteristics of
airfoils. In the notation of the present report, the total
collection e%ciency E. as stated in references 7 and 8
is deli.ned as

(2,2)

Ic

Chord
Free-stream

c, ft droplet
,8 Pressure Reynolds

oltlhJde# number,
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m 40 E-9 80

(n) Effect of pressure rdtitude and chord length Droplet diameter, 20 miorons; free-stream hkch number, 1.4; airfoil thiokness ratio, 0.02.

FIGURE7.—Total collection efficiency of symmetrical double-wedge airfoils as function of male parameter. Free-stream static temperature,
440° R; angle of attao~ OO.
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w~ere T is the maximum. thickness of the symmetrical
double-wedge airfoil, and l~J and ~,1are the absolute values of
the initial displacements from the leading edge (in a direction
normal to free-stream direction) of the droplet trajectories
chat impinge at the shoulder of the upper and lower sur-
faces, respectively, of the double-wedge airfoil. For the
symmetrical double-wedge airfoil at zero angle of attack, I{s]
and Ifl] will be equal; at an angle of attack, the tangent of
which is equal to the thickness ratio, the value of lruI is equal
to zero.

The scale pmamet er ~ is calculated for the double-wedge
airfoil at supersonic speeds as for other aufoils at subsonic
speeds. It is defined as

(23)

where c is the chord lengti of the double-wedge airfoil. The
results present ed for impingement on double-wedge airfoils
use essentially the same parameters as used for impinge-
ment on wedges-droplet size, free-stream Mach number,
double-wedge-airfoil thickness ratio, and pressure altitude.
In addition, angle of attack and chord length are specitied.

Total collection efficiency at zero angle of attack.-The
variation of the total collection efficiency 17~ with the scale
pmameter * is presented in figure 7 for a symmetrical
double-wedge airfoil at free-stream static temperature of
440° R and zero angle of attack. The eflect of pressure
altitude on the variation of Em with # for a symmetrical
double-wedge airfoil of 0.02 thiclmess ratio is given in figure
7 (a) for droplet diameter of 20 microns and free-stream Mach
number of 1.4. The pressure altitudes presented in the
figure are sea level, 15,000, and 30,000 feet. The lines for
constant values of chord length from 1 to 20 feet are also
included in the figure. For the double-wedge airfoil sub-
jected to a constant-velocity supemonic flow field, the total
collection efficiency Em increases slightly as the pressure
altitude is increased when the chord lmgth and the other
variables are held constant. Considering Em as a function
of scale parameter + where the droplet free-streamlteynolds
number ReI is held constant yields reanlts similar to those
for airfoils having rounded leading edges at subsonic speeds.
With Re, held constant, the value of Em decreases as x in-
creases in the manner indicated in figure 7 (a). As pre-
viously mentioned, the total collection efficiency and the
impingement rate at zero angle of attack for a symmetrical
double-wedge airfoil are compared in appendix C with
those for an h~ACA 000644 airfoil.

The effect of airfoil thickness ratio on the variation of E=
with # is presented in figure 7 (b) for thickness ratios horn
0.02 to 0.14, droplet diameter of 20 microns, free-stream
Mach number of 1.4, and pressure altitude of 15,000 feet.
The droplet free-stream Reynolds number is maintained
at a value of 453 for all the curves. The effect of increasing
the airfoil thickness ratio is to decrease the total collection
etliciency. Thg rate of decrease in Em with an increase in
airfoil thickness ratio becomes somewhat smaller as the”
thickness ratio increase9.’

The effect of free-stream Mach number on the variation
of total collection efficiency En with scale parameter 4 is

shown in figure 7 (c) for free-stream Mach numbers of 1.1,
1.2, 1.3, 1.4, 1.5, and 2.0, droplet diameter of 20 microns,
airfoil thickness ratio of 0.02, and pressure altitude of 16,000
feet. The results show that the totrd collection efficiency
increases as the free-stream Mach number increases. How-

ever, the increase in the totid collection eficiency from tho
free-stream Mach number of 1.1 to 1.2 is considerably
greater than the increase in efficiency from a Mach number of
1.2 to 1.3 and from 1.3 to 1.4, and so forth. calculations
for thickness ratios of 0.04 and 0.06 indicate jhe same trend.
For the 0.02 thickness ratio, the lomeat Mach number pre-
sented in figure 7 (c) (M= 1.1) is quite close to the lirnitiug
Mach number for shock-wave attachment. Therefore, t,hc
rate of decrease of total collection e5ciency with decrenaes
in free-stream Mach number increasea os the Mach number
approached the shock-wave-attachment Mach number as n
limit.

The effects of droplet size and chord length on the varin-
tion of Emwith + are shown in figures 7 (d) and (e). Figure
7 (d) presents curves of Emagainst # for a symmetrical double-
wedge airfoil of 0.02 thickness ratio at a free-stream Mach
number of 1.4and a pressure altitude of 16,000 feet. Tho
curves are for constant values of droplet diameter (d=
10, 20, 30, 40, and 50 microns) as well as for constant values
of chord length (c= 1, 2, 4, 8, and 20 ft). Increasing tho
droplet size greatly increases the total collection efficiency.
For ezmmple, at c=8 feet, the values of Em are 0.096, 0.310,
0.495, 0.625, and 0.711 at droplet diameters of 10, 20, 30,
40, and 50 microns, respectively. The rate of increase in
the total collection efficiency as the droplet diameter in-
creases is lc%s for the larger droplet sizes. This effect cnn
also be observed in figure 7 (e), in which curves of .& ns o
function of + are presented for a symmetrical double-wed~e
airfoil of 0.06 thickness ratio for droplet diameters of 2, 10,
20, 30,40, 50, and 100 microns, free-stream Mach number of
1.3, and pressure altitude of 15,000 feet.

A comparison of figures 7 (b) and (c) (same droplet size
and pressure altitude) shows that the effect on the total
collection efficiency En of an increake in the free-stream
Mach number from 1.1 to 2.0 is, in general, of the samo order
of magnitude as a decrease from 0.14 to 0.02 thickness ratio.
For example, for + of 1790 (c=S ft) in figure 7 (b), the vrdues”
of Em decreased from 0.310 to 0.165 for an increase from n
0.02 to a 0.14 thickness ratio, respectively, a decrense of
0.145 in the value of Em. For + of 1790 (c=8 ft) in figure
7 (c), the values of E~ increased from 0.230 to 0.400 for nn
increase in the free-stream Mach number from 1.1 to 2.0,
respectively, an increase of 0.170 in the value of Em.

Another comparison of figures 7 (c) and (d) (same airfoil
thickness ratio and pressure altitude) shows that the effect
on the total collection efficiency Em of an incrense in tlw
droplet diameter from 10 to 50 microns is much greater than
an increase in the free-stream Mach number from 1.1 to 2.0.
For axample, for c=8 feet in figure 7 (d), the value of Em
increased horn 0.095 to 0.710 for an incrense in the droplet
diameter from 10 to 50 microns, an increase of 0.616 in the
value of Ea. As stated previously, for c=8 feet (#=1790)
in figure 7 (c), the increase in the value of Emis 0.170 for n
corresponding increase in the value of the free-stream
Mach number from 1.1 to 2.0. For a constant value of
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FIGURE7.—Ckmtinued. Total collection et3ciency of symmetrical doubl~wedge airfoils as funotion of scale Parameter. Fr-straam statio
temperat~ 440° R: angle of attack, O“.
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(d) Effeat of droplet size and chord length. Free-etream Maoh number, 1.4; airfoil thickness ratio, 0.02; preeaure altitude, 15,000 feet.
(e) Effect of droplet size. Free-etream Mach number, 1.3; airfoil thickness ratio, 0.06; pressure altitude, 15,000 feet.

FIGURE7.—Concluded. Total collection @&ency of eymmetrlcal double-wed~ airfoila ae ,funotion of scale parameter. Free-stream statio
temperature,440° R; angleof attaalqOO.
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chord length, varying the pressure altitude has a relatively
small effect on the total collection efficiency (fig. 7 (a)).

Total aolleotion effloiency as function of angle of attack.—
The previous discussion is concerned with the total col-
lection efficiencies for the doublewedge airfoil at zero
angle of attack only. The effect of angle of attack on the
total collection efficiency is presented in figure 8 for airfoil
thickness ratios from 0.01 to 0.08, droplet diameter of 20
microns, free-stream Mach number of 1.4, pressure altitude
of 15,000 feet, and chord lengths of 1, 2, 4, and 12 feet.
The range of angle of attack is from zero to tan-’ (T/c).

The total collection efficiency decreases slightly as the
angle of attack increases The slope of the curve of Em
against tan u is zero at a=O, by virtue of the symmetry of
the double-wedge airfoil. As the angle of attack increases,
the slope of the E. against tan a curve becomes negative,
the rate of change becoming more pronounced as the angle
of attack increases. The effeet of increasing the chord length
of the double-wedge airfoil is to decrease slightly the rate of
decrease of Em with respect to tan cr. A significant point
that is well-illustrated in iigure 8 is that, for a constant value

of chord length, there apparently exists an envelope of the
family of E. against tan a curves that have the airfoil thick-
ness ratio T/c as the parameter. This envelope curve
presents, in terms of the angle of attack, the maximum total
collection efficiency that can be obtained for a symmetrical
double-wedge airfoil of any thickness ratio, where the
droplet size, free-stream Mach number, pressure altitude,
and chord length are considered to be constant.

For the double-wedge airfoil at a free-stream lMach
,number greater than the shock-wave-attachment Mach
number, the decrease in total collection efficiency with an

.

increasein angle of attack is opposed to the trend &perienced
by rounded-leading-edge airfoils at subsonic Mach numbers
(irrespective of the symmetry of the airfoil). For the latter
type of airfoil at subsonic speeds, the increase in total
collection efficiency (as defined herein) with increasing angle
of attack is accounted for by the greatly increased impinge-
ment that occurs on the lower surfaces of these airfoils at
angle of attack. The reduction of impingement occurring
on the upper surfaces of these airfoils at angle of attack is
more than balanced by the increased impingement occurring
on the lower surfaces. On the other hand, for a given double
wedge airfoil at supersonic speeds with an attached shock
wave, the rate of increase with angle of attack of the impinge-
ment on the lower surface is less in magnitude than the rate
of decrease with angle of attack of the impingement on the
upper surface. This general trend for the double-wedge
airfoil can be explained with the aid of figure 5 (a), in which
the effect of tan u (tangent of the semiapex angle) on the
total impingement rate is presented for a wedge of infinite
intent.

The forward upper surface of a symmetrical double-wedge
airfoil effectively acts as the finite portion of one surface of an
infinite wedge that is decreasing its semiapa angle (effecti
ively the thickness of wedge) as the angle of attack of the
double-wedge airfoil increases. The forward lower surface
of this type airfoil effectively acts as the finite portion of one
surface of an infinite wedge that is increasing its semiapex

I I 1
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FIQUREJ S.—Variation of total collection efficiency of symmetrical
double-wedge airfoils with angle of attaak. Free-stream static
temperature, 440° R; droplet diameter, 20 miorons; free-stream Maoh
number, 1.4; pressure altitude, 15,000 feet.

angle as the angle of attack increases. In figure 5 (a) the
increase in ~m, which is exactly prcportiomd to the total
impingement rate, becomes smaller with an increase in tan u
(i.e., @~~/d(trm U)2<O) for all possible values of the semiapm
angle u. For example, in iignre 5 (a) for the curve of JMI= 1.4,
the impingement on a symmetrical double-wedge airfoil of
0.08 thickness ratio and large chord ~xtent at zero angle of
attack would be very nearly proportional to twice the value
of ~~ at tan u of 0.08 (2~== 0.146 ft). The impingement for
the same airfoil under the same conditions and at an angle of
attack of 2.291° (tan a= O.04) would be very nearly pro-
portional to the sum of t. at tan u of 0.04 and 0.12

&-,a+~~,z=0.046 +0.0906=0.1365 ft).
Total collection efficiency as function of relative modiiled

inertia parameter,-For air-flow fields that contain a shock
wave, such as those considered herein, the water droplets
upon orossing the shock wave suddenly have a velocity
relative to the air. For the double-wedge airfoil with an
attached shock wave, this initial relative veloci@ is the same
for all droplets entering the air-flow field downstream of the
shock wave. As discussed in previous sections, this common
initial velocity Ui may be considered the initial velocity of
projection of a drcplet in a reference frame having no air
motion in it and moving relative to the fixed frame of refer-
ence at the constant velocity of the air downstream of the
shock wave. Therefore, it is of interd to define a set of
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inertia parameters, F and FO, breed on the motion Of the
droplet in this moving reference frame. The relative
inertia parameter based on the relative velocity u, is defined
as

~=~ LJQ Sf_%. *
v* 9 plc c

where K is the inertia parameter in the tied frame of refer-
ence, detied as

(24)

and Z. ~ is that value of the maximum distance of travel
obtained when Stokes’ law is assumed for the drag force on
the droplet.

The relative modiikd inertia parameter, also based on the
relative velocity Uf, is detied as

FO=~ F=?

where Z. is defined in equation (9), and experimental values
me used for the drag force on the droplet.

For the problem of water-droplet impingement on airfoils
lmving rounded leading edges at subsonic speeds, it is im-
possible to define a similar relative modified inertia param-
eter. &o, for any airfoil at supersonic speeds, it is impos-
sible tQ define a relative modified inertia parameta, unless
the shock wave from the leading edge is of constant strength

in the vicinity of the airfoil, as in the case qf the doublo-
wedge airfoils with attached shock waves. If the strmgth
of the shock wave is not ionstant, as for the case of a bow
shock wave preceding a blunt obstacle, then the value of .Fo

is not constant for all the trajectories of a given droplet size.
Thus, the problem of impingement on wedges and doublo-
wedge airfoils at supersonic speeds with attached shock
waves is unique in that a relative motied inertia paramotor
can be defined and used in correlating the total collection
efficiencies.

The correlation of the total collection efficiency with the
relative modilied inertia parameter .3’0is shown in figure 9 (fi)
for droplet diametem varying from 2 to 100 microns nnd
for prcssmre altitudes of sea level, 15,000, and 30,000 feet.
For the symmetrical double-wedge airfoil of 0.06 thickness
ratio at MI= 1.3 and zero angle of attack, the droplet free-
stream Reynolds number Rel varies from 42.1 to 2104. The
values of Em for a given thickness ratio, Mach number, and
angle of attack generally form the basis for a single curve
with a small amount of scatter existing in the highm range
of value of FO. In the lower range of Fo, for all values of Rel
the plotted points have negligible scatter. The small scatter
observed is possibly due to the existence of a very slight
trend of the curves of Em against F. with Rel for the higher
values of Fo.

.

The effect of increasing the thickness ratioispresented in

figure 9 (b) for symmetrical double-wedge airfoils of 0.02,
0.06, and 0.12 thickness ratio. Increasing the thicbess
ratio displaces the Em against F. curve toward larger values

) 43s0103 ZcQ 4md&2 .

(a) Correlation of pressure altitude and droplet size. Free—streamMach number, 1.3; airfoil thicknw ratio, 0.06.

Fmmm 9.—Total collection eflloiency of symmetrical doubl~wedge airfoils as function of relative modified inertia parameter. Free-stream statio
temperature, 440° R; angle of attaok, OO.
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(b) Effect of thickness ratio. Droplet diameter, 20 microns; free-stream Maoh number, 1.4; premmre altitude, 15,000 feat.
(o) Effect of free-etream Mach number. Droplet diameter, 20 microns; airfoil thickness ratio, 0.02; pressure altitude, 15,000 feat.

FIGURE9.—Conoluded. Total collection eilloiencyof symmetricaldouble-wedgeairfoils= function of relative moditied inertia parameter. Frce-
stream static temperature, 440° R; angle of attao~ OO.
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of FO. Changing the thickness ratio of the doubhvedge
airfoil does not alter the shape of the curve itself.

The effect of the free-strewn Mach number on the variation
of l?= with ~0 is presented in figure 9 (c) for the symmetrical
double-wedge airfoil of 0.02 thickness ratio for droplet diam-
et er of 20 microns, free-stream Mach numbers of 1.1, 1.2,
1.5, and 2.0,’and pressure altitude of 15,000 feet. kreasing
the Mach number displaces the entire curve of Em against

I’otoward smaller values of .FO. As the value of Ml increama,
the rate of displacement of the curve with increasing Ml
becomes smaller. The displacement of the curve obtained
by increasing the Mach number from 1.1 to 1.2 is more than
that obtained by increasing it from 1.2 to 1.5 and from 1.5
to 2.0.

The relative inertia parameter ~ and’the relative modified
inertia parameter ~. of the moving frame ‘of reference cor-
respond, respectively, to the inertia parameter K and a
mod&d inertia parameter m of the fied frame of reference.
The modified inertia parameter is detined in reference 14 as

Eo=;K
s

(25)

where A is the maximum distanm of travel of a drcplet
projected into still air with the free-stream velocity V1.
The term A, is the value of the mtium distance of travel k
when Stokes’ law is assumed for the drag force on the droplet.
The total collection efficiency of a symmetrical doublewedge
airfoil is presented in appendix D as a function of the modiiied
inertia parameter &.

SUMMARY OF RESULTS

This report presents an analysis of the problem of im-

pingement of water dropletson a wedge and a double-wedge

airfoilat supersonic speeds with attached shock waves.

~en a suitable empirical relationis used for the drag co-

efficientof a sphere, the analysis allows a closed-form inte-

gration of the equations of motion for the water droplets.

The integration results in analytical expressions for the

equation of the trajectories,the droplet velocityat any point

on the trajectories,the local impingement efficiencies,and

the totalrate of impingement. The resultsof the calcula-

tions of rate, extent, and distribution of impingement of

water droplets on wedges and symmetrical double-wedge

airfoilsare summarized brieflyas follows (the Mach number

referredto isthe free-stream llaeh number, which isgreater

than the attachment ~lach number for the wedge or the

double-w-edge airfoil):

1. At a given value of Mach number, droplet size, and
pressure altitude, the local impingement eflicienoy as a
function of the dimensional surface distance is the same for
both the wedge and the symmetrical double-wedge airfoil
at zero angle of attac$, provided the tangent of the semiapex
angle of the wedge is equal to the thickness ratio of the sym-
metrical double-wedge airfoil.

2. I?or any Mach number, pressure altitude, and droplot
diameter, the value of @ois equal to the sine of the semiapex
angle for wedge or symmetrical double-wedge airfoil. ~0
is the value (maximum) of local impingement efficienq
as distance from leding edge to point of impingement
approached zero.]

3. The effect of the free-shw.un static temperature on tlm
local impingement efficien~ and total collection efficiency
is negligible for temperatures from 420° to 460° R.

4. At ccnstant values of Mach number, droplet size, rmd
semiapm angle of the wedge or corresponding thickness
ratio of the symmetrical double-wedge airfoil, an increase in
the pressure altitude increases slightly the local impingement
efficiencies and total collection rates on wedges and sym-
metrical doublewedge airfoils, but has a negligible effect
on the surface extent of perceptible impingement.

5. At constant values of Mach number, droplet size, and
pressure altitude, increasing the thickness ratio of the sym-
metrical double-wedge airfoil or corresponding smniapcm
angle of the wedge increases the local impingement efficiency,
haa a negligible effect on the surface extent of perceptible
impingement, and decreases the total collection efficiency
of the symmetrical double-wedge airfoil.

6. At constxmt values of droplet size, pressure altitude,
and semiapex angle of the wedge or thickness ratio of tlm
symmetrical doubbvedge airfoil, an increase in Mach
number increases both the surface extent of impingement
and the value of the local impingement e5ciency.

7. At constant valuea of pressure altitude, semiapox
angle of the wedge or thiclmeas ratio of the symmetrical
double-wedge airfoil, and Mach number, an incrmso in
the droplet size increasea considerably the surface extent of
perceptible impingement, the local impingement officionqy,
and the total impingement rate.

8. The variation of total collection efficiency of the sym-
metrical double-wedge airfoil at zero angle of attack as o
function of the scale parameter for constant values of the
droplet free-stream Reynolds number is similar in form to
that for subsonic airfoils.

9. The total collection efficiency of the symmetrical
double-wedge airfoil decreasea slightly m the angle of attack
increnses.

10. For a symmetrical double-wedge airfoil of a given
thiclmess ratio and Mach number, the values of totnl col-
lection efficiency for a wide range of values of droplet free-
~lmeam Reynolds number comprise a single curve when
plotted against the relative modified inertia parameter. The
e%’ect of increasing the thickness ratio or decreasing tlm
Mach number is to displace the entire curve in the direction
of larger values of relative modiiied inertia parameter.

LEWIS FLIGHT PROPULSIONLABORATORY
NATIONAL ADVISORY COMMITTEDFOR ADRONAUTHYS

CLEVELAND,Oreo, AM %1, 1968
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APPENDIX A

SYMBOLS

The followingsymbols are used in thisreport:

a

c.

c

D
d
Em

F

I“

M
m
ml n21n3

P
R
Rer

Re,

s

T
t
t,
u

v
w
Wp
w

Xm,,

;

#o

droplet radius, ft
drag coefficient,dimensionless

airfoilchord length,ft

drag force on sphericalwater droplet,lb

droplet diameter, microns

total collectionefficiency(defined by eq. (22)),

dimensionless

2 p.(zzuiz= , hen
relative inertia parameter, ——=-~

9 plc c -
sionless

relative mod.ilied inertia parameter, ~ F=?

acceleration due to gravity, 32.2 ft(sec?
2 P@a2V1

inertiaparameter, – —=$ dimensionlws
9 /.llc

modified inertia parameter, ~K=$ dimensionless
s

Mach number
empirical constant (used in eq. (5)), 2/3
constants of flow field (defined by eqs. (18a), (18b),

and (18c), respectively)
static pressure, lb/sq ft
gas constant, 53.3 ftAb/(lb) (“F)
droplet Reynolds number relative to air behind

shock wave, 2ap2V/pz, dimensionless
free-stream droplet Reynolds number, 2ap,VJPJ,

dimensionless
distance to point of,impingement measured from

leading edge for water droplet that enters flow

fieldbehind shock wave at distance ~ above

leading edge (eq.(15)and fig.1),ft
maximum thicluwss of airfoil, ft
time, sec
free-tream static temperature, ‘R
magnitude of droplet velocity relative to air

velocity downstream of shock wave, l~~—~zl, fps
velocity, fps or mph
rat e of water catch, lb/(hr) (f t span)
local rate of water catch, lb/(hr) (sq ft surface)
liquid-water content of air, g/cum

J

1
U d.t,displacement of droplet in moving frame

o
of reference (relative to air stream); where t= O
the instant water droplet intercepts shock wave

maximum value of displacement z as 7+ co as limit

(maximum distance of travel of droplet projected
into still air with relative velocity Uf),”f t

value of maximum distance of travel z= obtti”ed
by assuming Stokes? law for drag force on

droplet, ft
angle of attack of airfoil, deg
local impingement efficiency, dl/dS, dimensionless
maximum value of B as S’4; PO=sin u, dimensions

I&s

ratio of specitlc heats (1.4 for air)
empirical constant (used in eq. (5)), 0.158, dimen-

sionless
initial displacement of droplet trajectories from

leading edge in direction normal to free-stream
direction (eq. (13))

maximum value of initial droplet displacement ~
obtained when trajectory is tangent to wedge
surface (theoretically as S+ m)

absolute values of initial displacement from leading
edge (ii direction normal to free-stream direc-
tion) of droplet trajectories that impinge at
shoulder of upper and lower surfaces, respec-
tively, of double-wedge airfoil

distance along shock wave measured from wedge
apex to point where droplet trajectory intercepts
shock wave

shock-wave angle

angle between free#iream velocity vector ~1 and

droplet velocity vector Td
maximum distance of travel of droplet projected

into still air with free-stream velocity VI) ft
value of distance of travel 1 obtained by assuming

Stokes’ law for drag force on water droplet, ft
dynamic viscosity based on static temperature,

(lb) (see)/sq ft

angle between free&ream velocity vector ~1 and

initial relative velocity vector ~t (defined by eq.
(13a))

components of droplet displacement referred to
wedge surface (delined by eq. (12)), ft

mass density of air, slugs/cu ft
waterdroplet mass density, 1.9398 slugs/cu ft
semiapax angle

angle between droplet Vdocity vector ~d and

velocity vector 72

dimensionless time variable, (3~/pt4z2)t

phase angle, tan-l (Rer,~-113e-1)2),

scale parameter, (9c/a) (pJpm)
ratio of air velocity downstream

free-stream velocity VJV,
ratio of initial droplet relative

stream velocity ti~Vl
Subscliptw ,

d droplet
‘i initial (at shock wave)
im impingement
1 lower
m maximum
u upper
1 free stream
2 downstream of shock wave (in

reference)

Barred symbols denote vectorial quantities.

OS PS; (eq. (9))

of shock wave to

velocity to free-

fkxed frame of
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APPENDIX B

CLOSED-FORM INTEGRATION OF EQUATION OF MOTION (RELATIVETO AJR FLOW DOWNSTREAM OF SHOCK WAVK)

The various steps necessary to the closed-form integration
of equation (6), which is the d.iihrential equation of motion
of the water droplet in the moving reference frame, are given
herein. The differential equation of motion (6) can be re-
written as

dU “~ (1+eArUrna”)
X=–X a’

@l)

where, for convenience,

Re,=A,Ua @2)

(B3)

@34)

Algebraic simpliikation and rewriting result in the form

A, dU
‘t=–u(l +A.u”) (135)

where

(B6)

and
A,= eAra” (B7)

Equation @5) is not readily integrable in its present form.
By letting

p=u” @8)

and

pt.– p –u”
pi m

(B9)

equation (B5) becomes

dt= –$ y+h ‘p’ ‘p’m 1+A-#tp’ @lo)

This form of the equation is readily integrated, and upon
resubstituting the relations @) and @9), there is obtained
the following expression for the velocity of the droplet as a
function of the time t:

where .B1is the constant of integration.

Since U=%, equa’tion @n) can be rewritten in iutegral

form as

where Bz is tie second integration constant. IZquation
@312) requires simplification before a closed-form integration
cm he performed. Consider the following substitutions:

(3313)

A5=$ Ut~A,)-l/”=# (A,) -llrn (3314)

A,=(nA,)-’ exp [–B,m/A3] (B16)

By using the substitutions given by @13), @14), and (B16),
it is possible to write equation (B12) as

SS
dx= A5(A,ev– l)-l/mdy+-& (B16)

Before further steps can be taken in the closed-form iutegrrt-
tion- of the equation of motion of the droplet, the value of
the empirical constant m must be detemnined. It is noted
that in approximating the curve of the drag coefficient as a
function of the local Reynolds number by a relation of the
form given by

CD=% (1+ eRe> (5)

itispossible to consider that the value of m is 213 and the
value of e is 0.158. That the approximation of the e.spmi-
mental curve by the empirical relation is very good in tie
range of Reynolds numbers from about 0.5 to 600 can be
seen by refeming to figure 2, which presents Q graph of the
empirical relation along with the drag-coefficient data of
references 4 and 12.

The use of m=2/3 in equation (B16) along with the sub-
stitution

ew= q (3317)

and the use of formulas of integration given on pages 16 and
17 of reference 15 allow equation (1316) to be integrated M
shown in the following steps:

SS
(ix=

q(A~~~ql)’n+B2

JA=-J ‘“q J(A;%P+B2q(Asq—l)lfl+Ae

z—Bz__
2Ab &

–tan-’ J- (B18)

H the original time or independent variable tisreintroduced
into equation (1318) and the substitutions are made for A5
md &, the equation has the form

:A4)3fl(B2–z)= (A, U,’@)’/’
3A3

44%?)I-A4U’2’: ‘

(B19)

\
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Substituting for A, and & (except in the exponent of e) in
oquution (B19) results in

(1320)

J3quation (B20) is the integrated equation with undeter-
mined inte.gmtion constants for the motion of the water
droplets relative to the air velocity behind the shock wave.
The integration constants are determined from the boundary
conditions, which are

u= u,
1

at t=O
Z=’o

The substitution of the bounda~ conditions, and thus the
determination of the integration constants .BI and 132,
results in the fmrd form of the integrated equation of motion
for the water droplets relative to the air velocity down-

stream of the shock wave as follows (in the frame of refer-
ence moving with the constant velocity T~q):

1

J(Re,,, -2/3,-1+ I)er_ ~ 1
–t,m-’@er, ,-’/’e-’+l)er– 1 (7)

The final form of the ccmx+ponding equation for the relative
velocity of the water droplet as a function of the dimension-
less time variable is obtained from equation (B1l) m

‘=R~ ‘(Re” “lSC-’+ l)e’– 1] ‘3/’ (8)

It can be seen from equations (7) and (8) that as t approaches
infinity the value of U approaches zero and that a limit
exists for the value of x as t approaches infinity. This
limiting value of z is

APPENDIX c

COMPARISON OF COLLECTION EFFICIENCY AND IMPINGEMENT RATE FOR SYMMETRICAL DOUBLE-WEDGE AIRFOIL
WITH THOSE FOR NACA 0006-64AIRFOIL

A comprtrison of the total collection efficiency as a func-
tion of a moditied inertia parameter & for a symmetrical
double-wedge airfoil at supersonic speeds (attached shock
wave) with that for the hTACA 0006-64 airfoil (ref. 9) at
free-stream Mach numbers less than critical ii presented in
figure 10. Both airfoils have 0.06 thiclmesa ratios and are
at zero angle of attack. It is important to keep in mind
that figure 10 does not allow a comparison of the two air-
foils at the same Mach number, and such a comparison can-

; “l=EE’5iiI#

ii
F

,2

?1 2 .4s1 4060 Ico 2@Jx lo-2
Modi%sd h&t; &met~ KO

FIGURE10.—Comparison of total oolfeotion efficiency x function of
modified inertia parameter for symmetrical double-wedge airfoil at
supersonic spseds with attached shock ~Ve ~th t~t for NACA
0006-(34afrfoil at free-streamMach number 10SSthan critical. Air-
foil thloknws ratio, 0.06; angle of attack, OO.

not be made, because the analysis for the NACA 0006-64
airfoil is not valid above the critical Mach number and that
for the symmetrical double-wedge airfoil is not valid below
the shock-wave-attachment Mach number. It is, however,
of value to consider a comparison of the two airfoils with
each operating within its appropriate speed range. In figure
10 the rate of increase in Em with respect to & is greater
for the symmetrical double-wedge airfoil than for the ~ACA
0006-. For a constant droplet size, pressure altitude and
temperature, and free-stream Mach number, resulting in a
constant value of h, & varies inversely as the chord length

(&=~/c). k general therefore, the rate of decrease in E=
with increasing chord length is greater in magnitude for the
symmetrical double-wedge airfoil than for the hTACA 0006-64
airfoil.

A comptin of the rate of total water catch per unit
span for the symmetrical double-wedge airfoil with that for
the NACA 0006-64 airfoil can be obtained if values (neces-
sarily diflerent) for the free-stream Mach numbers for the
two airfoils are assigned. Assume that both airfoils tie of
the same thickncsa ratio and chord length and that they
encounter identical icing wnditions of droplet diameter (2o
microns), pressure altitude and temperature (15,000 ft and
440° R), and liquid-water content (0.5 g/cu m), but have
free-stream Mach numbers of 1.5 and 0.75, respectively.
For the static temperature asaumed, the Mach numbers of
1.5 and 0.75 corr~pond to speeds of 1051 and 526 miles
per hour, respectively. Therefore, the maetitudes of the
inertia parameter K and the free-stream droplet Reynolds
number Rel for the double-wedge airfoil are twice as great
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(a) Correlation of p=ure altitude and droplet size. Free-stream Mach number, 1.3; airfoil tbicknesa ratio, 0.06.
(b) Effeot of thiokn- ratio. - Droplet diameter, 20 miorons; free-stream Maoh number, 1.4; pre+sure altitude, 16,000 feet.
(c) Effect of free-stream Mach number. Droplet diameter, 20 miorons; airfoil thioknem ratio, 0.02; prawre altitude, 15,000 feet.

FIGURE1l.—Total collection efficiency of symmetrical double-wedge airfoils as function o; modified inertia wrameter. Free-streamst~tio
temperature,440° R; angleof attaok, OO.
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as for the NACA 0006-64 airfoil. Varying the chord length
from 1 to 20 feet produces a change in the value of.& from
0,386 to 0.0193 for the double-wedge airfoil ahd from 0.266
to 0.0130 for the NACA 0006% airfoil. This variation in
& for both airfoils results in values of lZmof the same order
of magnitude. For the given icing conditions, the following
table lists for chord lengths of 4 and 20 feet the various p~r-
tinent parameters and variables, including the rate of total
water catch on the airfoil per unit span for both airfoils:

Sgmmdriaddonble-~edgeoIrfollatM-1.6 (ViH1051mph) I

l—l_TlTid7mi_tTFwl$
NAOA CIW3+34Wfoll at M-o.7u (VI=~ mph)

.

I
242

I
0.271 0.246

2!
I

aw
243 I

O.w
.0bi2 .246 .OH .Iz3 I 1: i?

The rate of total water catch on the airfoil per unit span is
calculated from

Wn=0.3296&TVlw

where T is in ftiet, w in grams per cubic meter, and VI in
miles per hour. For this particular emmple, the table shows
that for the 4-foot chord, the double-wedge airfoil has a
somewhat larger value of E= than the NACA 0006-64 air-
foil; and for the 20-foot chord, the opposite is the case.
Comparison of the two airfoils for a given chord length
shows that, as mpected, the effect of the total collection
efficiency on the rate of water catch is small when compared
with the free-stream veloci@- ratio chosen (2:1). The most
significant comparison to be obtained from the table is that,
for the double-wedge airfoil, increasing the chord length by a
factor of 5 (from 4 to 20 ft) results in .an increase of only 28
percent in the rate of water catch; whereas, for the IVACA
airfoil, alike change in the chord length rcmdts in an increase
of 94 percent. This difference is the result of the fact that,
unlike the local impingement on the rounded-leading-edge
airfoils at free-stream Mach numbers less than critical, the
local impingement at a given point on the surface of a
double-wedge airfoil does not vary with the chord length of
the airfoil, which is at a supemonic Mach number above the
shock-wave-attachment Mach number..

APPENDIX D
.

TOTAL COLLECTION EFFICIENCY OF SYMMETRICAL DOUELE-WEDGE AIRFOILS AS FUNCTION OF MODIFIED INERTIA
PARAM3WER

The total collection efficiency ,Ea is presented in figure 11
as D function of the modiiied inertia parameter -&j as sug-
gested in reference 14. The relation for&is

where K is the inertia parameter,” defined as

,
(25)

(24)K– : PW;:CVI

Since K is equal to h,/c (ref. 4), & may also be written as

~=+K=?
1 c

The free-stream droplet Reynolds numbers used herein in
calculating & range up to 2104. The empirical drag law
(eq. (5)) tied in this report for the droplet motion in the
moving reference frame is valid up to the Reynolds number of
approximately 500. Therefore, for the values of & pre-
sented in figure 11 (and also fig. 10), the values of X/X, were
obtained from table I of reference 4.

The curves of E= against .&in figure 11have exactly the
same form as the curves of E= against Fo, mcept that the use
of K results in a displacement of the entire curve toward
larger abscissa values. The displacement of the Em against
& curves obtained by varying the thiclmess ratio (@g. 11 (b))
or the free-stream Mach number (@g. 11 (c)) is lws than
the displacement of the En against FOcurves obtained by the
same procedures (figs. 9 (b) and (c)).

.
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